Endothelin receptor antagonists in chronic kidney disease
Yanagisawa, M. et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332, 411–415 (1988).
Google Scholar
Sakurai, T. et al. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348, 732–735 (1990).
Google Scholar
Arai, H., Hori, S., Aramori, I., Ohkubo, H. & Nakanishi, S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348, 730–732 (1990).
Google Scholar
Davenport, A. P. et al. Endothelin. Pharmacol. Rev. 68, 357–418 (2016).
Google Scholar
Kohan, D. E., Rossi, N. F., Inscho, E. W. & Pollock, D. M. Regulation of blood pressure and salt homeostasis by endothelin. Physiol. Rev. 91, 1–77 (2011).
Google Scholar
Karet, F. & Davenport, A. Comparative quantification of endothelin receptor mRNA in human kidney: new tools for direct investigation of human tissue. J. Cardiovasc. Pharmacol. 26, S268–S271 (1995).
Google Scholar
Karet, F. E., Kuc, R. E. & Davenport, A. P. Novel ligands BQ123 and BQ3020 characterize endothelin receptor subtypes ETA and ETB in human kidney. Kidney Int. 44, 36–42 (1993).
Google Scholar
Kohan, D. E. & Barton, M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int. 86, 896–904 (2014).
Google Scholar
de Zeeuw, D. et al. The endothelin antagonist atrasentan lowers residual albuminuria in patients with type 2 diabetic nephropathy. J. Am. Soc. Nephrol. 25, 1083–1093 (2014).
Google Scholar
Heerspink, H. J. L. et al. Atrasentan in patients with IgA nephropathy. N. Engl. J. Med. (2024).
Heerspink, H. J. L. et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet 393, 1937–1947 (2019).
Google Scholar
Trachtman, H. et al. DUET: a phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS. J. Am. Soc. Nephrol. 29, 2745–2754 (2018).
Google Scholar
Heerspink, H. J. L. et al. Sparsentan in patients with IgA nephropathy: a prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial. Lancet 401, 1584–1594 (2023).
Google Scholar
Rovin, B. H. et al. Efficacy and safety of sparsentan versus irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial. Lancet 402, 2077–2090 (2023).
Google Scholar
Kedzierski, R. M. & Yanagisawa, M. Endothelin system: the double-edged sword in health and disease. Annu. Rev. Pharmacol. Toxicol. 41, 851–876 (2001).
Google Scholar
Goddard, J. et al. Endothelin-A receptor antagonism reduces blood pressure and increases renal blood flow in hypertensive patients with chronic renal failure. Circulation 109, 1186–1193 (2004).
Google Scholar
Goddard, J. et al. Endothelin A receptor antagonism and angiotensin-converting enzyme inhibition are synergistic via an endothelin B receptor-mediated and nitric oxide-dependent mechanism. J. Am. Soc. Nephrol. 15, 2601–2610 (2004).
Google Scholar
Dhaun, N. et al. Selective endothelin-A receptor antagonism reduces proteinuria, blood pressure, and arterial stiffness in chronic proteinuric kidney disease. Hypertension 57, 772–779 (2011).
Google Scholar
Daehn, I. et al. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J. Clin. Invest. 124, 1608–1621 (2014).
Google Scholar
Rabelink, T. J. et al. Heparanase: roles in cell survival, extracellular matrix remodelling and the development of kidney disease. Nat. Rev. Nephrol. 13, 201–212 (2017).
Google Scholar
Ebefors, K. et al. Endothelin receptor-A mediates degradation of the glomerular endothelial surface layer via pathologic crosstalk between activated podocytes and glomerular endothelial cells. Kidney Int. 96, 957–970 (2019).
Google Scholar
Garsen, M. et al. Endothelin-1 induces proteinuria by heparanase-mediated disruption of the glomerular glycocalyx. J. Am. Soc. Nephrol. 27, 3545–3551 (2016).
Google Scholar
Barton, M. & Sorokin, A. Endothelin and the glomerulus in chronic kidney disease. Semin. Nephrol. 35, 156–167 (2015).
Google Scholar
Sorokin, A. & Kohan, D. E. Physiology and pathology of endothelin-1 in renal mesangium. Am. J. Physiol. Renal Physiol. 285, 579–589 (2003).
Google Scholar
Simonson, M. S. & Ismail-Beigi, F. Endothelin-1 increases collagen accumulation in renal mesangial cells by stimulating a chemokine and cytokine autocrine signaling loop. J. Biol. Chem. 286, 11003–11008 (2011).
Google Scholar
Komers, R. & Plotkin, H. Dual inhibition of renin-angiotensin-aldosterone system and endothelin-1 in treatment of chronic kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R877–884 (2016).
Google Scholar
Benigni, A. Tubulointerstitial disease mediators of injury: the role of endothelin. Nephrol. Dial. Transplant. 15, 50–52 (2000).
Google Scholar
Lehrke, I., Waldherr, R., Ritz, E. & Wagner, J. Renal endothelin-1 and endothelin receptor type B expression in glomerular diseases with proteinuria. J. Am. Soc. Nephrol. 12, 2321–2329 (2001).
Google Scholar
Gerstung, M., Roth, T., Dienes, H. P., Licht, C. & Fries, J. W. U. Endothelin-1 induces NF-κB via two independent pathways in human renal tubular epithelial cells. Am. J. Nephrol. 27, 294–300 (2007).
Google Scholar
Zoja, C. et al. Proximal tubular cell synthesis and secretion of endothelin-1 on challenge with albumin and other proteins. Am. J. Kidney Dis. 26, 934–941 (1995).
Google Scholar
Zager, R. A., Johnson, A. C. M., Andress, D. & Becker, K. Progressive endothelin-1 gene activation initiates chronic/end-stage renal disease following experimental ischemic/reperfusion injury. Kidney Int. 84, 703–712 (2013).
Google Scholar
Lai, K. N. et al. IgA nephropathy. Nat. Rev. Dis. Prim. 2, 1–20 (2016).
Nakamura, T., Ebihara, I., Fukui, M., Tomino, Y. & Koide, H. Effect of a specific endothelin receptor A antagonist on glomerulonephritis of ddY mice with IgA nephropathy. Nephron 72, 454–460 (1996).
Google Scholar
Cox, J. et al. Human renal mesangial cell activation induced by endothelin-1 or IgA nephropathy patient-derived immune complexes is blocked by selective eta antagonist atrasentan. Kidney Int. Rep. 6, S160–S161 (2021).
Google Scholar
King, A. et al. Selective ETA antagonist atrasentan, rapidly reduces albuminuria and downregulates intra-renal pro-inflammatory and pro-fibrotic transcriptional networks in the gddY mouse model of spontaneous IgA nephropathy. Kidney Int. Rep. 6, S164 (2021).
Google Scholar
Olson, E. et al. Selective endothelin a receptor antagonist atrasentan attenuates mesangial cell injury, proteinuria and intra-renal proliferative, inflammatory and fibrotic transcriptional networks in a rat model of mesangioproliferative glomerulonephritis. Nephrol. Dial. Transplant. 37, gfac067.063 (2022).
Google Scholar
Olson, N., McConnell, M. & McCown, P. Single nuclei RNA-Seq reveals cell-type specific responses to disease and enalapril in the gddY mouse model of IgA nephropathy. ASN Kidney Week Abstract: TH-PO419 (2022).
Nagasawa, H. et al. Sparsentan, the dual endothelin angiotensin receptor antagonist (DEARA), attenuates albuminuria and protects from the development of renal injury to a greater extent than losartan in the GDDY mouse model of IGA nephropathy: a 16-week study. Nephrol. Dial. Transplant. 37, gfac067.060 (2022).
Google Scholar
Reily, C. et al. Sparsentan ameliorates glomerular hypercellularity and inflammatory-gene networks induced by IgA1-IgG immune complexes in a mouse model of IgA nephropathy. Am. J. Physiol. Renal Physiol. 326, F862–F875 (2024).
Google Scholar
Chen, H. et al. Plasma and urinary endothelin‐1 in focal segmental glomerulosclerosis. J. Clin. Lab. Anal. 15, 59–63 (2001).
Google Scholar
van de Lest, N. A. et al. Endothelial endothelin receptor A expression is associated with podocyte injury and oxidative stress in patients with focal segmental glomerulosclerosis. Kidney Int. Rep. 6, 1939–1948 (2021).
Google Scholar
Daehn, I., Yu, L. & Yi, Z. Podocyte-derived endothelin-1 and cross-talk with endothelial cells through EdnrA is essential for glomerular injury. ASN Kidney Week Abstract: FR-OR101 (2023).
Gyarmati, G., Deepak, S. & Shroff, U. Sparsentan improves glomerular endothelial and podocyte functions and augments protective tissue repair in a mouse model of focal segmental glomerulosclerosis. ASN Kidney Week Abstract: FR-OR56 (2022).
Bedard, P., Jenkinson, C. & Komers, R. Sparsentan protects the glomerular basement membrane and glycocalyx, and attenuates proteinuria in a rat model of focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 37, MO255 (2022).
Google Scholar
Benigni, A. et al. Unselective inhibition of endothelin receptors reduces renal dysfunction in experimental diabetes. Diabetes 47, 450–456 (1998).
Google Scholar
Zoja, C. et al. Angiotensin II blockade limits tubular protein overreabsorption and the consequent upregulation of endothelin 1 gene in experimental membranous nephropathy. Exp. Nephrol. 6, 121–131 (1998).
Google Scholar
Delimont, D. et al. Laminin α2-mediated focal adhesion kinase activation triggers Alport glomerular pathogenesis. PLoS ONE 9, e99083 (2014).
Google Scholar
Dufek, B. et al. Endothelin A receptor activation on mesangial cells initiates Alport glomerular disease. Kidney Int. 90, 300–310 (2016).
Google Scholar
Cosgrove, D. et al. Dual inhibition of the endothelin and angiotensin receptor ameliorates renal and inner ear pathologies in Alport mice. J. Pathol. 260, 353–364 (2023).
Google Scholar
Schneider, J. G. et al. Elevated plasma endothelin-1 levels in diabetes mellitus. Am. J. Hypertens. 15, 967–972 (2002).
Google Scholar
Sasser, J. M. et al. Endothelin A receptor blockade reduces diabetic renal injury via an anti-inflammatory mechanism. J. Am. Soc. Nephrol. 18, 143–154 (2007).
Google Scholar
Hocher, B. et al. Effects of endothelin receptor antagonists on the progression of diabetic nephropathy. Nephron 87, 161–169 (2001).
Google Scholar
Lenoir, O. et al. Direct action of endothelin-1 on podocytes promotes diabetic glomerulosclerosis. J. Am. Soc. Nephrol. 25, 1050–1062 (2014).
Google Scholar
Boels, M. G. S. et al. Atrasentan reduces albuminuria by restoring the glomerular endothelial glycocalyx barrier in diabetic nephropathy. Diabetes 65, 2429–2439 (2016).
Google Scholar
Kim, J. A., Montagnani, M., Kwang, K. K. & Quon, M. J. Reciprocal relationships between insulin resistance and endothelial dysfunction. Circulation 113, 1888–1904 (2006).
Google Scholar
Khan, M. A. et al. Upregulation of endothelin A receptor sites in the rabbit diabetic kidney: potential relevance to the early pathogenesis of diabetic nephropathy. Nephron 83, 261–267 (1999).
Google Scholar
Minchenko, A. G. et al. Diabetes-induced overexpression of endothelin-1 and endothelin receptors in the rat renal cortex is mediated via poly(ADP-ribose) polymerase activation. FASEB J. 17, 1–18 (2003).
Google Scholar
Cosenzi, A. et al. Nephroprotective effect of bosentan in diabetic rats. J. Cardiovasc. Pharmacol. 42, 752–756 (2003).
Google Scholar
Ding, S. S. et al. Chronic endothelin receptor blockade prevents both early hyperfiltration and late overt diabetic nephropathy in the rat. J. Cardiovasc. Pharmacol. 42, 48–54 (2003).
Google Scholar
Kohan, D. E., Cleland, J. G., Rubin, L. J., Theodorescu, D. & Barton, M. Clinical trials with endothelin receptor antagonists: what went wrong and where can we improve? Life Sci. 91, 528–539 (2012).
Google Scholar
Veenit, V. et al. The sodium glucose co-transporter 2 inhibitor dapagliflozin ameliorates the fluid-retaining effect of the endothelin A receptor antagonist zibotentan. Nephrol. Dial. Transplant. 38, 2289–2297 (2023).
Google Scholar
Vergara, A. et al. Enhanced cardiorenal protective effects of combining SGLT2 inhibition, endothelin receptor antagonism and RAS blockade in type 2 diabetic mice. Int. J. Mol. Sci. 23, 12823 (2022).
Google Scholar
Kohan, D. E. et al. Addition of atrasentan to renin-angiotensin system blockade reduces albuminuria in diabetic nephropathy. J. Am. Soc. Nephrol. 22, 763 (2011).
Google Scholar
Wenzel, R. R. et al. Avosentan reduces albumin excretion in diabetics with macroalbuminuria. J. Am. Soc. Nephrol. 20, 655–664 (2009).
Google Scholar
Mann, J. F. E. et al. Avosentan for overt diabetic nephropathy. J. Am. Soc. Nephrol. 21, 527 (2010).
Google Scholar
Smolander, J. et al. Dose-dependent acute and sustained renal effects of the endothelin receptor antagonist avosentan in healthy subjects. Clin. Pharmacol. Ther. 85, 628–634 (2009).
Google Scholar
Heerspink, H. J. et al. People with type 1 diabetes and chronic kidney disease urgently need new therapies: a call for action. Lancet Diabetes Endocrinol. 11, 536–540 (2023).
Google Scholar
A study of the effect and safety of sparsentan in the treatment of patients with IgA nephropathy (PROTECT). US National Library of Medicine. ClinicalTrials.gov (2024).
Atrasentan in patients with IgA nephropathy (ALIGN). US National Library of Medicine. ClinicalTrials.gov (2024).
Heerspink, H. J. L. et al. The selective endothelin receptor antagonist SC0062 in IgA nephropathy: a randomized double-blind placebo-controlled clinical trial. J. Clin. Soc. Nephrol. (2024).
Google Scholar
Randomized, double-blind, safety and efficacy study of RE-021 (sparsentan) in focal segmental glomerulosclerosis (DUET). US National Library of Medicine. ClinicalTrials.gov (2024).
Rheault, M. N. et al. Sparsentan versus Irbesartan in focal segmental glomerulosclerosis. N. Engl. J. Med. 389, 2436–2445 (2023).
Google Scholar
Atrasentan in patients with proteinuric glomerular diseases (AFFINITY). US National Library of Medicine. ClinicalTrials.gov (2024).
Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).
Google Scholar
Wheeler, D. C. et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 9, 22–31 (2021).
Google Scholar
Heerspink, H. J. L., Kohan, D. E. & de Zeeuw, D. New insights from SONAR indicate adding sodium glucose co-transporter 2 inhibitors to an endothelin receptor antagonist mitigates fluid retention and enhances albuminuria reduction. Kidney Int. 99, 346–349 (2020).
Google Scholar
Heerspink, H. J. L. et al. Zibotentan in combination with dapagliflozin compared with dapagliflozin in patients with chronic kidney disease (ZENITH-CKD): a multicentre, randomised, active-controlled, phase 2b, clinical trial. Lancet 402, 2004–2017 (2023).
Google Scholar
Heerspink, H. J. L. et al. Efficacy and safety of zibotentan and dapagliflozin in patients with chronic kidney disease: study design and baseline characteristics of the ZENITH-CKD trial. Nephrol. Dial. Transplant. 39, 414–425 (2023).
Google Scholar
Study to investigate efficacy, safety, and tolerability of zibotentan/dapagliflozin compared to dapagliflozin in participants with chronic kidney disease and high proteinuria (ZENITH high proteinuria). US National Library of Medicine. ClinicalTrials.gov (2024).
Randomized, double-blind, placebo-controlled, crossover study of atrasentan in subjects with IgA nephropathy (ASSIST). US National Library of Medicine. ClinicalTrials.gov (2024).
Ambrisentan sotagliflozin and prevention of renal injury; a randomized evaluation (ASPIRE). US National Library of Medicine. ClinicalTrials.gov (2023).
A study to investigate safety and effect of sparsentan in combination with SGLT2 inhibition in participants with IgAN. US National Library of Medicine. ClinicalTrials.gov (2024).
Bugaj, V., Mironova, E., Kohan, D. E. & Stockand, J. D. Collecting duct-specific endothelin b receptor knockout increases ENaC activity. Am. J. Physiol. Cell Physiol. 302, 188–194 (2012).
Google Scholar
Bugaj, V. et al. Regulation of the epithelial Na+ channel by endothelin-1 in rat collecting duct. Am. J. Physiol. Renal Physiol. 295, 1063–1070 (2008).
Google Scholar
Stuart, D. et al. Disruption of the endothelin A receptor in the nephron causes mild fluid volume expansion. BMC Nephrol. 13, 166 (2012).
Google Scholar
Stuart, D., Chapman, M., Rees, S., Woodward, S. & Kohan, D. E. Myocardial, smooth muscle, nephron, and collecting duct gene targeting reveals the organ sites of endothelin A receptor antagonist fluid retention. J. Pharmacol. Exp. Ther. 346, 182–189 (2013).
Google Scholar
Yu, H. et al. The role of venous capacity in fluid retention with endothelin A antagonism: mathematical modelling of the RADAR trial. Br. J. Pharmacol. 181, 4693–4707 (2024).
Google Scholar
Galiè, N., Hoeper, M. M., Gibbs, J. S. R. & Simonneau, G. Liver toxicity of sitaxentan in pulmonary arterial hypertension. Eur. Respir. J. 37, 475–476 (2011).
Google Scholar
Owen, K., Cross, D. M., Derzi, M., Horsley, E. & Stavros, F. L. An overview of the preclinical toxicity and potential carcinogenicity of sitaxentan (Thelin®), a potent endothelin receptor antagonist developed for pulmonary arterial hypertension. Regul. Toxicol. Pharmacol. 64, 95–103 (2012).
Google Scholar
Lepist, E. I. et al. Evaluation of the endothelin receptor antagonists ambrisentan, bosentan, macitentan, and sitaxsentan as hepatobiliary transporter inhibitors and substrates in sandwich-cultured human hepatocytes. PLoS ONE 9, e87548 (2014).
Google Scholar
Wei, A. et al. Clinical adverse effects of endothelin receptor antagonists: insights from the meta-analysis of 4894 patients from 24 randomized double-blind placebo-controlled clinical trials. J. Am. Heart Assoc. 5, e003896 (2016).
Google Scholar
Kohan, D. E., Liew, A., Tang, S. C. W., Barratt, J. & Heerspink, H. J. L. Effects of atrasentan on markers of liver function in patients with type 2 diabetes and chronic kidney disease. Diabetes Obes. Metab. 25, 2410–2412 (2023).
Google Scholar
Pena, M. J. et al. The effects of atrasentan on urinary metabolites in patients with type 2 diabetes and nephropathy. Diabetes Obes. Metab. 19, 749–753 (2017).
Google Scholar
Andress, D. L. et al. Clinical efficacy of the selective endothelin A receptor antagonist, atrasentan, in patients with diabetes and chronic kidney disease (CKD). Life Sci. 91, 739–742 (2012).
Google Scholar
Dhaun, N. et al. Endothelin-A receptor antagonism modifies cardiovascular risk factors in CKD. J. Am. Soc. Nephrol. 24, 31–36 (2013).
Google Scholar
Pinto-Sietsma, S. J. & Paul, M. A role for endothelin in the pathogenesis of hypertension: fact or fiction? Kidney Int. 54, S115–S121 (1998).
Google Scholar
Iglarz, M. & Schiffrin, E. L. Role of endothelin-1 in hypertension. Curr. Hypertens. Rep. 5, 144–148 (2003).
Google Scholar
Akter, S. et al. Higher circulatory level of endothelin-1 in hypertensive subjects screened through a cross-sectional study of rural Bangladeshi women. Hypertens. Res. 38, 208–212 (2014).
Google Scholar
Kostov, K., Blazhev, A., Atanasova, M. & Dimitrova, A. Serum concentrations of endothelin-1 and matrix metalloproteinases-2, -9 in pre-hypertensive and hypertensive patients with type 2 diabetes. Int. J. Mol. Sci. 17, 1182 (2016).
Google Scholar
Kostov, K. & Blazhev, A. Circulating levels of endothelin-1 and big endothelin-1 in patients with essential hypertension. Pathophysiology 28, 489–495 (2021).
Google Scholar
Kostov, K. & Kim, J. The causal relationship between endothelin-1 and hypertension: focusing on endothelial dysfunction, arterial stiffness, vascular remodeling, and blood pressure regulation. Life 11, 986 (2021).
Google Scholar
Krum, H., Viskoper, R., Lacourciere, Y., Budde, M. & Charlon, V. The effect of an endothelin-receptor antagonist, bosentan, on blood pressure in patients with essential hypertension. N. Engl. J. Med. 338, 784–791 (1998).
Google Scholar
Weber, M. A. et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial. Lancet 374, 1423–1431 (2009).
Google Scholar
Bakris, G. L. et al. Divergent results using clinic and ambulatory blood pressures. Hypertension 56, 824–830 (2010).
Google Scholar
Schlaich, M. P. et al. Dual endothelin antagonist aprocitentan for resistant hypertension (PRECISION): a multicentre, blinded, randomised, parallel-group, phase 3 trial. Lancet 400, 1927–1937 (2022).
Google Scholar
Davison, S. N., Koncicki, H. & Brennan, F. Pain in chronic kidney disease: a scoping review. Semin. Dial. 27, 188–204 (2014).
Google Scholar
Naidoo, V., Naidoo, S., Mahabeer, R. & Raidoo, D. M. Cellular distribution of the endothelin system in the human brain. J. Chem. Neuroanat. 27, 87–98 (2004).
Google Scholar
Smith, T. P., Haymond, T., Smith, S. N. & Sweitzer, S. M. Evidence for the endothelin system as an emerging therapeutic target for the treatment of chronic pain. J. Pain. Res. 7, 531–545 (2014).
Google Scholar
Hans, G., Deseure, K. & Adriaensen, H. Endothelin-1-induced pain and hyperalgesia: a review of pathophysiology, clinical manifestations and future therapeutic options. Neuropeptides 42, 119–132 (2008).
Google Scholar
Pomonis, J. D., Rogers, S. D., Peters, C. M., Ghilardi, J. R. & Mantyh, P. W. Expression and localization of endothelin receptors: implications for the involvement of peripheral glia in nociception. J. Neurosci. 21, 999–1006 (2001).
Google Scholar
Khodorova, A., Montmayeur, J. P. & Strichartz, G. Endothelin receptors and pain. J. Pain. 10, 4–28 (2009).
Google Scholar
Motta, E. M., Chichorro, J. G. & Rae, G. A. Role of ETA and ETB endothelin receptors on endothelin-1-induced potentiation of nociceptive and thermal hyperalgesic responses evoked by capsaicin in rats. Neurosci. Lett. 457, 146–150 (2009).
Google Scholar
D’Amico, M., Di Filippo, C. & Rossi, F. Selective and non-selective et antagonists reveal an ETA/ETB receptor mediated ET-1-induced antinociceptive effect in PAG area of mice. Life Sci. 61, PL397–PL401 (1997).
Hans, G., Deseure, K., Robert, D. & De Hert, S. Neurosensory changes in a human model of endothelin-1 induced pain: a behavioral study. Neurosci. Lett. 418, 117–121 (2007).
Google Scholar
Chan, K. W. et al. Post hoc analysis of the SONAR trial indicates that the endothelin receptor antagonist atrasentan is associated with less pain in patients with type 2 diabetes and chronic kidney disease. Kidney Int. 104, 1219–1226 (2023).
Google Scholar
Rossing, P. et al. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 102, S1–S127 (2022).
Google Scholar
Dolinina, J., Rippe, A. & Öberg, C. M. Sustained, delayed, and small increments in glomerular permeability to macromolecules during systemic ET-1 infusion mediated via the ETA receptor. Am. J. Physiol. Renal Physiol. 316, F1173–F1179 (2019).
Google Scholar
Kuro, T. et al. Selective antagonism of the ETA receptor, but not the ETB receptor, is protective against ischemic acute renal failure in rats. Jpn. J. Pharmacol. 82, 307–316 (2000).
Google Scholar
Forbes, J. M., Hewitson, T. D., Becker, G. J. & Jones, C. L. Simultaneous blockade of endothelin A and B receptors in ischemic acute renal failure is detrimental to long-term kidney function. Kidney Int. 59, 1333–1341 (2001).
Google Scholar
Liss, P., Carlsson, P. O., Nygren, A., Palm, F. & Hansell, P. Et-A receptor antagonist BQ123 prevents radiocontrast media-induced renal medullary hypoxia. Acta Radiol. 44, 111–117 (2003).
Google Scholar
Abu-Saleh, N. et al. Involvement of the endothelin and nitric oxide systems in the pathogenesis of renal ischemic damage in an experimental diabetic model. Life Sci. 91, 669–675 (2012).
Google Scholar
Helmy, M. M., Helmy, M. W., Abd Allah, D. M., Abo Zaid, A. M. & Mohy El-Din, M. M. Selective ETA receptor blockade protects against cisplatin-induced acute renal failure in male rats. Eur. J. Pharmacol. 730, 133–139 (2014).
Google Scholar
De Miguel, C. et al. Endothelin receptor-specific control of endoplasmic reticulum stress and apoptosis in the kidney. Sci. Rep. 7, 1–13 (2017).
Google Scholar
Colafella, K. M. M. et al. Selective ETA vs. dual ETA/B receptor blockade for the prevention of sunitinib-induced hypertension and albuminuria in WKY rats. Cardiovasc. Res. 116, 1779–1790 (2020).
Google Scholar
Harvey, T. W., Engel, J. E. & Chade, A. R. Vascular endothelial growth factor and podocyte protection in chronic hypoxia: effects of endothelin-A receptor antagonism. Am. J. Nephrol. 43, 74–84 (2016).
Google Scholar
Shimizu, T., Hata, S., Kuroda, T., Mihara, S. I. & Fujimoto, M. Different roles of two types of endothelin receptors in partial ablation-induced chronic renal failure in rats. Eur. J. Pharmacol. 381, 39–49 (1999).
Google Scholar
Chade, A. R., Stewart, N. J. & Peavy, P. R. Disparate effects of single endothelin-A and -B receptor blocker therapy on the progression of renal injury in advanced renovascular disease. Kidney Int. 85, 833–844 (2014).
Google Scholar
Chade, A. R., Tullos, N., Stewart, N. J. & Surles, B. Endothelin-A receptor antagonism after renal angioplasty enhances renal recovery in renovascular disease. J. Am. Soc. Nephrol. 26, 1071–1080 (2015).
Google Scholar
Saleh, M. A., Pollock, J. S. & Pollock, D. M. Distinct actions of endothelin A-selective versus combined endothelin A/B receptor antagonists in early diabetic kidney disease. J. Pharmacol. Exp. Ther. 338, 263–270 (2011).
Google Scholar
Braun, C. et al. Prevention of chronic renal allograft rejection in rats with an oral endothelin A receptor antagonist. Transplantation 68, 739–746 (1999).
Google Scholar
Braun, C. et al. Treatment with a combined endothelin A/B-receptor antagonist does not prevent chronic renal allograft rejection in rats. J. Cardiovasc. Pharmacol. 36, 428–437 (2000).
Google Scholar
Kasztan, M. et al. Long-term endothelin-A receptor antagonism provides robust renal protection in humanized sickle cell disease mice. J. Am. Soc. Nephrol. 28, 2443–2458 (2017).
Google Scholar
link