Wearable sensors for monitoring chronic kidney disease

0
Wearable sensors for monitoring chronic kidney disease
  • GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 395, 709–733 (2020).

    Article 

    Google Scholar 

  • McCullough, K. et al. Measuring the population burden of chronic kidney disease: a systematic literature review of the estimated prevalence of impaired kidney function. Nephrol. Dial. Transplant. 27, 1812–1821 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Coresh, J. Update on the burden of CKD. J. Am. Soc. Nephrol. 28, 1020–1022 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, T. K., Knicely, D. H. & Grams, M. E. Chronic kidney disease diagnosis and management. JAMA 322, 1294–1304 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, Y. et al. Analysis of the global burden of disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int. 94, 567–581 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Feehally, J., Floege, J., Tonelli, M. & Johnson, R. J. Comprehensive clinical nephrology (Elsevier, 2018).

  • Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nyein, H. Y. Y. et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun. 12, 1823 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bandodkar, A. J. & Wang, J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32, 363–371 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bariya, M., Nyein, H. Y. Y. & Javey, A. Wearable sweat sensors. Nat. Electron. 1, 160–171 (2018).

    Article 

    Google Scholar 

  • Goud, K. Y. et al. Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward Parkinson management. ACS Sens. 4, 2196–2204 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walker, H. K., Hall, W. D. & Hurst, J. W. Clinical methods: the history, physical, and laboratory examinations (Butterworths, 1990).

  • Ren, F., Li, M., Xu, H., Qin, X. & Teng, Y. Urine albumin‐to‐creatinine ratio within the normal range and risk of hypertension in the general population: a meta‐analysis. J. Clin. Hypertens. 23, 1284–1290 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cánovas, R., Cuartero, M. & Crespo, G. A. Modern creatinine (Bio)sensing: challenges of point-of-care platforms. Biosens. Bioelectron. 130, 110–124 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ebah, L., Brenchley, P., Coupes, B. & Mitra, S. A modified in vivo flow variation technique of microdialysis for sampling uremic toxins in the subcutaneous interstitial compartment. Blood Purif. 32, 96–103 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, C.-T., Chen, M.-L., Huang, L.-L. & Mao, I.-F. Uric acid and urea in human sweat. Chin. J. Physiol. 45, 109–115 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Mussap, M. & Plebani, M. Biochemistry and clinical role of human cystatin C. Crit. Rev. Clin. Lab. Sci. 41, 467–550 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tran, B. Q. et al. Proteomic characterization of dermal interstitial fluid extracted using a novel microneedle-assisted technique. J. Proteome Res. 17, 479–485 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, J., Fang, Y. & Chen, J. Wearable biosensors for non-invasive sweat diagnostics. Biosensors 11, 245 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Butler, A. R. The Jaffé reaction. Part II. A kinetic study of the Janovsky complexes formed from creatinine (2-imino-1-methylimazolidin-4-one) and acetone. J. Chem. Soc. Perkin Trans. 2, 853–857 (1975).

    Article 

    Google Scholar 

  • Divya, Mahapatra, S. & Chandra, P. Design and engineering of a palm-sized optical immunosensing device for the detection of a kidney dysfunction biomarker. Biosensors 12, 1118 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lad, U., Khokhar, S. & Kale, G. M. Electrochemical creatinine biosensors. Anal. Chem. 80, 7910–7917 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thompson, H. & Rechnitz, G. A. Ion electrode based enzymic analysis of creatinine. Anal. Chem. 46, 246–249 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tsuchida, T. & Yoda, K. Multi-enzyme membrane electrodes for determination of creatinine and creatine in serum. Clin. Chem. 29, 51–55 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Berberich, J. A., Chan, A., Boden, M. & Russell, A. J. A stable three-enzyme creatinine biosensor. 3. Immobilization of creatinine amidohydrolase and sensor development. Acta Biomater. 1, 193–199 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Liu, Y., Cánovas, R., Crespo, G. A. & Cuartero, M. Thin-layer potentiometry for creatinine detection in undiluted human urine using ion-exchange membranes as barriers for charged interferences. Anal. Chem. 92, 3315–3323 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wei, F. et al. Serum creatinine detection by a conducting-polymer-based electrochemical sensor to identify allograft dysfunction. Anal. Chem. 84, 7933–7937 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pan, J., Chen, W., Ma, Y. & Pan, G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev. 47, 5574–5587 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gonzalez-Gallardo, C. L., Arjona, N., Álvarez-Contreras, L. & Guerra-Balcázar, M. Electrochemical creatinine detection for advanced point-of-care sensing devices: a review. RSC Adv. 12, 30785–30802 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, Z. et al. Molecularly imprinted polymers based materials and their applications in chromatographic and electrophoretic separations. TrAC Trends Anal. Chem. 146, 116504 (2022).

    Article 
    CAS 

    Google Scholar 

  • Parlak, O., Keene, S. T., Marais, A., Curto, V. F. & Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 4, eaar2904 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prabhu, S. N., Mukhopadhyay, S. C., Gooneratne, C. P., Davidson, A. S. & Liu, G. Molecularly imprinted polymer-based detection of creatinine towards smart sensing. Med. Devices Sens. 3, e10133 (2020).

    Article 
    CAS 

    Google Scholar 

  • Cho, M. G., Hyeong, S., Park, K. K. & Chough, S. H. In situ preparation of fine particles and characterization of molecularly imprinted polymer for creatinine prepared from polymer anion and Al3+. Polymer 221, 123587 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chen, C. H. & Lin, M. S. A novel structural specific creatinine sensing scheme for the determination of the urine creatinine. Biosens. Bioelectron. 31, 90–94 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jia, Y. et al. Battery-free and wireless tag for in situ sensing of urinary albumin/creatinine ratio (ACR) for the assessment of albuminuria. Sens. Actuators B Chem. 367, 132050 (2022).

    Article 
    CAS 

    Google Scholar 

  • Nontawong, N. et al. Novel amperometric flow-injection analysis of creatinine using a molecularly-imprinted polymer coated copper oxide nanoparticle-modified carbon-paste-electrode. J. Pharm. Biomed. Anal. 175, 112770 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eggenstein, C. et al. A disposable biosensor for urea determination in blood based on an ammonium-sensitive transducer. Biosens. Bioelectron. 14, 33–41 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Uzunçar, S., Meng, L., Turner, A. P. F. & Mak, W. C. Processable and nanofibrous polyaniline:polystyrene-sulphonate (nano-PANI:PSS) for the fabrication of catalyst-free ammonium sensors and enzyme-coupled urea biosensors. Biosens. Bioelectron. 171, 112725 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Li, Y. et al. A point-of-care sensing platform for multiplexed detection of chronic kidney disease biomarkers using molecularly imprinted polymers. Adv. Funct. Mater. 34, 2316865 (2024). This work demonstrates highly sensitive creatinine/urea sensors with a limit-of-detection of the femtomolar level, facilitating a point-of-care sensing platform for simultaneous detection of the CKD biomarkers.

  • Finney, H., Newman, D. J., Gruber, W., Merle, P. & Price, C. P. Initial evaluation of cystatin C measurement by particle-enhanced immunonephelometry on the behring nephelometer systems (BNA, BN II). Clin. Chem. 43, 1016–1022 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Devi, K. S. S. & Krishnan, U. M. Microfluidic electrochemical immunosensor for the determination of cystatin C in human serum. Microchim. Acta 187, 1–12 (2020).

    Article 

    Google Scholar 

  • Ferreira, P. A. B. et al. An ultrasensitive Cystatin C renal failure immunosensor based on a PPy/CNT electrochemical capacitor grafted on interdigitated electrode. Colloids Surf. B Biointerfaces 189, 110834 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dong, Y. et al. A disposable printed amperometric biosensor for clinical evaluation of creatinine in renal function detection. Talanta 248, 123592 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kalasin, S., Sangnuang, P., Khownarumit, P., Tang, I. M. & Surareungchai, W. Salivary creatinine detection using a Cu(I)/Cu(II) catalyst layer of a supercapacitive hybrid sensor: a wireless IoT device to monitor kidney diseases for remote medical mobility. ACS Biomater. Sci. Eng. 6, 5895–5910 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system. Lab Chip 19, 1545–1555 (2019). This work demonstrates colorimetric wearable sensors equipped with microfluidics for simultaneous detection of creatinine and urea through sweat, which shows the potential for the development of wearable CKD sensing platforms.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Y.-J. et al. Microneedle patches integrated with lateral flow cassettes for blood-free chronic kidney disease point-of-care testing during a pandemic. Biosens. Bioelectron. 208, 114234 (2022). This work shows microneedle patches that can detect cystatin C in interstitial fluids, which opens up new avenues for rapid, blood-free kidney test kits.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z. et al. Engineering materials for electrochemical sweat sensing. Adv. Funct. Mater. 31, 2008130 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liao, C., Zhang, M., Niu, L., Zheng, Z. & Yan, F. Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene modified gate electrodes. J. Mater. Chem. B 1, 3820–3829 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soldatkina, O. V. et al. Improvement of amperometric transducer selectivity using nanosized phenylenediamine films. Nanoscale Res. Lett. 12, 594 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gutruf, P. Towards a digitally connected body for holistic and continuous health insight. Commun. Mater. 5, 2 (2024).

    Article 

    Google Scholar 

  • Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    Article 
    CAS 

    Google Scholar 

  • Emrich, H. M. et al. Sweat composition in relation to rate of sweating in patients with cystic fibrosis of the pancreas. Pedia. Res. 2, 464–478 (1968).

    Article 
    CAS 

    Google Scholar 

  • Strand, E. J. et al. Printed organic electrochemical transistors for detecting nutrients in whole plant sap. Adv. Mater. Technol. 8, 2100853 (2022).

    CAS 

    Google Scholar 

  • Lee, Y. et al. Tunable organic active neural probe enabling near‐sensor signal processing. Adv. Mater. 35, 2301782 (2023).

    Article 
    CAS 

    Google Scholar 

  • Kumar, R. K. R., Shaikh, M. O., Kumar, A., Liu, C.-H. & Chuang, C.-H. Zwitterion-functionalized cuprous oxide nanoparticles for highly specific and enzymeless electrochemical creatinine biosensing in human serum. ACS Appl. Nano Mater. 6, 2083–2094 (2023).

    Article 

    Google Scholar 

  • Sharma, S., Saeed, A., Johnson, C., Gadegaard, N. & Cass, A. E. Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring. Sens. Bio-sens. Res. 13, 104–108 (2017).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *